
Thermique: comment fonctionne une thermistance de type Pt100?

Capacités	Connaissances
Mesurer des températures. Choisir et utiliser un capteur de température	Connaître différents types de thermomètres et leur principe de fonctionnement (thermomètre à résistance – thermosonde à résistance de Pt (Pt100) – thermocouple, thermomètres à infrarouge, thermomètre à cristaux liquides)

I-Problématique:

Son symbole électrique est :

Vous devez dépanner un four de restaurant qui s'arrête avant la fin de cuisson, le code d'erreur indiqué sur l'écran est E61.

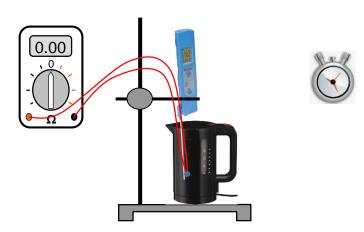
En consultant le document « Spécifications four et messages d'erreur », répondre aux questions suivantes :	
Quel est l'élément provocant la panne :	
Quelle est sa plage de températures :	
II- Etude de la sonde thermique	Itelem
L'élément en cause est un capteur de température nommé «	
La électrique de ce capteur varie en fonction de la	

Entourer la photo de la thermistance (la même que celle de la station météo) que le professeur vous a distribuée :

A-Mesures rapides pour comprendre le fonctionnement de la thermistance :

1- Comment varie, selon vous, la valeur de la résistar	ace d'une thermistance Pt100 en fonction de la température ?
2- Comment le vérifier expérimentalement ?	
On dispose: - d'une thermistance Pt100 - d'un ohmmètre - d'une source froide (eau du robinet) - d'une source chaude (eau chaude) a- Etablir un protocole rapide permettant de connaître l'évolution de la valeur de la résistance aux bornes de la thermistance en fonction de la température.	Protocole:
b- Réaliser les mesures et conclure.	

Pour mieux connaître ce capteur, on décide de tracer sa courbe caractéristique.


B-Mesures plus précises pour obtenir la caractéristique de la thermistance :

matériel :

- 1 thermistance de type Pt100
- 1 bouilloire
- 1 thermomètre
- 1 ohmmètre
- 1 chronomètre (votre téléphone)
- 1 support avec sa pince

Produit:

eau

Protocole:

- 1) Remplir la bouilloire avec de l'eau jusqu'à la graduation 0,5L.
- 2) Plonger la thermistance et la sonde du thermomètre dans l'eau en utilisant la pince pour fixer le montage.
- 3) Relier la thermistance à l'ohmmètre.
- 4) Préparer le chronomètre en l'initialisant.

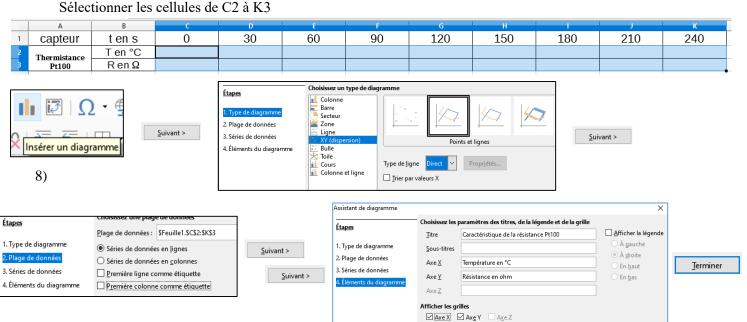
Appeler le professeur pour qu'il vérifie le montage et règle l'ohmmètre.

Mesures:

5) Relever les valeurs mesurées par le thermomètre et l'ohmmètre puis compléter la colonne correspondant à t = 0 s :

t	0 s	30 s	1 min	1 min 30s	2 min	2 min 30s	3 min	3 min 30s	4 min
T en °C									
R en ohm									

6) Déclencher le chronomètre et relever le couple de valeurs (résistance et température) pour chaque valeur de t.


Appeler le professeur pour qu'il vérifie vos mesures.

Interprétation:

7) a) A l'aide du tableur CALC, représenter R en fonction de T.

	A	В	C	D	E	F	G	Н	1	J	K
1	capteur	t en s	0	30	60	90	120	150	180	210	240
2	Thermistance	T en °C									
3	Pt100	RenΩ									

b) Représenter la courbe :

Validation:

A l'aide de votre	courbe cara	ctéristique,	déterminer l	a valeur o	le la résistanc	e pour une te	empérature o	de 20°C
$R_{20} = \dots$								

III- <u>Retour au problème</u>
Lorsqu'on mesure la résistance de la sonde du four en panne pour une température de 20°C, on trouve
$R=2,3 \text{ k}\Omega$, cette valeur est-elle correcte ? (justifier votre réponse)
Conclusion : Que faut-il faire pour dépanner le four, expliquer pourquoi ?