

Fraternité

Olympiades académiques de mathématiques 2025 Académie de Rennes

L'épreuve se déroule en deux parties indépendantes de deux heures chacune. Les énoncés des deux parties sont donc séparés et distribués séparément à des moments différents.

La seconde partie est constituée des exercices académiques et résolue en équipes de 2, 3 ou 4 candidats : **une seule copie par équipe**, portant les noms de tous les membres de l'équipe, est remise à la fin de l'épreuve.

Les calculatrices sont autorisées selon la réglementation en vigueur.

Il est conseillé aux candidats qui ne pourraient formuler une réponse complète à une question d'exposer le bilan des initiatives prises. Les énoncés doivent être rendus au moment de quitter définitivement la salle de composition.

Seconde Partie

Exercices académiques

Épreuve par équipes de 2, 3 ou 4 candidats

La seconde partie de l'épreuve contient trois exercices.

Les équipes de candidats de voie générale ayant suivi l'enseignement de spécialité de mathématiques doivent traiter les exercices académiques 1 et 2.

Les autres équipes de candidats doivent traiter les exercices académiques 1 et 3.

L'énoncé académique comporte 8 pages.

Exercice 1 (pour tous les candidats): Hervé et ses réseaux

Un réseau est un ensemble de points et de segments ayant les propriétés suivantes :

- Il y a deux catégories de points : les rouges notés par la lettre R et les verts par la lettre V.
- If y a toujours un ou deux point(s) rouge(s) et au moins un point vert.
- Les points sont reliés entre eux par des segments de sorte qu'en suivant ces segments on peut toujours passer d'un point à un autre en une ou plusieurs étapes.

Les points rouges sont notés R_1 , R_2 , et les verts sont notés V_1 , V_2 , V_3 , etc.

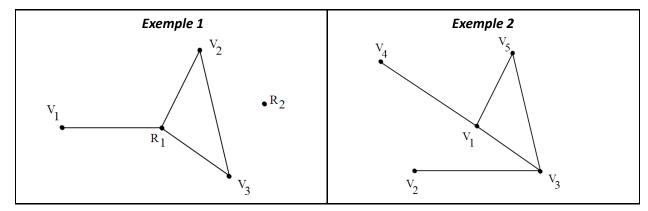
Deux points d'un réseau reliés par un trait sont appelés des points voisins.

À chaque point rouge est attribué un nombre.

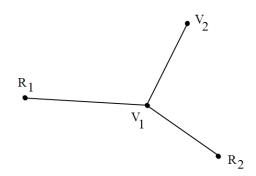
On veut savoir s'il est possible d'attribuer à chaque point vert un nombre vérifiant la propriété (P) suivante :

Le nombre attribué à tout point vert est égal à la moyenne des nombres attribués à ses voisins.

1. Expliquer pourquoi les deux exemples ci-dessous ne sont pas des réseaux.



- **2.** On donne le réseau ci-contre où l'on a attribué les nombres :
 - 10 à R_1 ; 4 à R_2 ; 7 à V_1 et 7 à V_2 .
 - **a.** Pour chacun des points V_1 et V_2 , donner la liste de ses points voisins.
 - b. Expliquer pourquoi ce réseau vérifie la propriété (P).



3. a. Dans le réseau suivant, il a été attribué le nombre 4 à R_1 . Quels nombres doivent être attribués à V_1 et V_2 pour que la propriété **(P)** soit satisfaite ?

b. Dans le réseau suivant, il a été attribué les nombres 4 à R_1 et 1 à R_2 . Quels nombres doivent être attribués à V_1 et V_2 pour que la propriété **(P)** soit satisfaite ?

Pour les questions suivantes, on note v_1, v_2, \dots, v_n les nombres attribués aux points $V_1, V_2, \dots V_n$; les nombres p et q sont des réels positifs.

4. Soit n un entier naturel strictement supérieur à 2. On considère les points $R_1, V_1, V_2, ..., V_n$ placés dans cet ordre sur un segment. On attribue le nombre p à R_1 .

Déterminer v_1, v_2, \dots, v_n pour que la propriété **(P)** soit satisfaite.

5. Soit n un entier naturel strictement supérieur à 2. On considère les points $R_1, V_1, V_2, \dots, V_n$ et R_2 placés dans cet ordre sur un segment. On attribue le nombre p à R_1 et le nombre q à R_2 .

Le but est de déterminer v_1, v_2, \dots, v_n pour que la propriété (P) soit satisfaite.

- **a.** Justifier que $v_1 p = v_2 v_1$ et que $v_n v_{n-1} = q v_n$.
- **b.** Montrer que pour tout entier k compris entre 2 et (n-1) on a $v_k v_{k-1} = v_{k+1} v_k$.

Dans la suite de la question, on note r ces (n-1) différences.

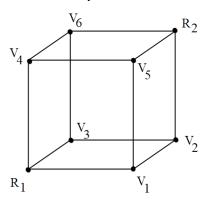
On a donc pour tout entier k comprise ntre 1 et n-1: $r=v_{k+1}-v_k$.

- **c.** Exprimer r en fonction de n, p et q.
- **d.** Pour tout entier k compris entre 1 et n, déterminer le nombre v_k en fonction de k, p et r.
- 6. Le réseau ci-contre est un cube de l'espace.

On attribue le nombre 10 à R_1 et le nombre 5 à R_2 .

On admet que
$$v_1 = v_3 = v_4$$
 et que $v_2 = v_5 = v_6$.

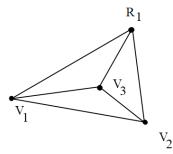
Déterminer alors les nombres v_1 à v_6 pour que la propriété **(P)** soit satisfaite.



7. a. Le réseau ci-contre est un tétraèdre de l'espace.

On attribue le nombre p à R_1 .

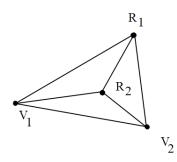
Déterminer v_1, v_2 et v_3 pour que la propriété **(P)** soit satisfaite.



b. Le réseau ci-contre est aussi un tétraèdre de l'espace.

On attribue le nombre p à R_1 et le nombre q à R_2 .

Déterminer v_1 et v_2 pour que la propriété **(P)** soit satisfaite.



c. Soit l'ensemble $E = \{R_1, R_2, V_1, V_2, V_3, \dots, V_n\}$ où n est un naturel non nul.

On suppose que, tout comme dans les tétraèdres précédents, tout point de E est voisin de chacun des autres points de E.

On attribue le nombre p à R_1 et le nombre q à R_2 .

Déterminer v_1, v_2, \dots, v_n pour que la propriété **(P)** soit satisfaite.

Exercice 2 (pour les candidats suivant l'enseignement de spécialité mathématiques de la voie générale) : Juste une mise aux points

On dit qu'un point est à coordonnées entières lorsque son abscisse <u>et</u> son ordonnée sont des entiers. Dans cet exercice, on s'intéresse à des courbes représentatives de fonctions dont on veut savoir si elles contiennent des points à coordonnées entières.

Il y a quatre catégories de courbes.

- Courbe entière : chaque point de la courbe qui a une abscisse entière a une ordonnée entière.
- Courbe **infinie-entière** : elle contient une infinité de points à coordonnées entières sans être une courbe entière.
- Courbe **finie-entière** : elle contient au moins un point à coordonnées entières, sans en posséder une infinité.
- Courbe zéro-entière : elle ne contient aucun point à coordonnées entières.

Soient a et b deux entiers. On rappelle les propriétés suivantes :

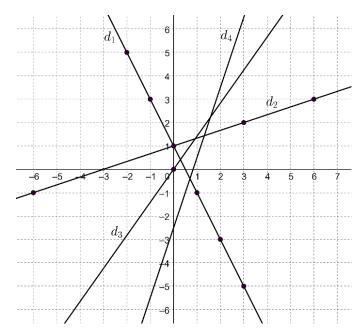
- b est **pair** équivaut à : il existe un entier k tel que $b = 2 \times k$.
- b est **impair** équivaut à : il existe un entier k tel que $b = 2 \times k + 1$.
- b est **multiple de** a équivaut à : il existe un entier k tel que $b = k \times a$.

PARTIE A

On a tracé ci-contre les droites $d_{\rm 1},d_{\rm 2},d_{\rm 3}$ et $d_{\rm 4}$ dont les équations réduites sont :

$$d_1: y = -2x + 1;$$
 $d_2: y = \frac{x}{3} + 1;$ $d_3: y = \sqrt{2}x;$ $d_4: y = 3x - 2.5.$

- **1.** Montrer que d_1 est une courbe entière.
- 2. Déterminer les points à coordonnées entières de d_2 et en déduire la catégorie de la courbe d_2 .
- **3.** On rappelle que $\sqrt{2}$ est un nombre irrationnel, qui ne peut pas s'écrire sous la forme d'un quotient de deux entiers. Montrer que d_3 est une courbe finieentière.
- **4.** Montrer que d_4 est une courbe zéroentière.

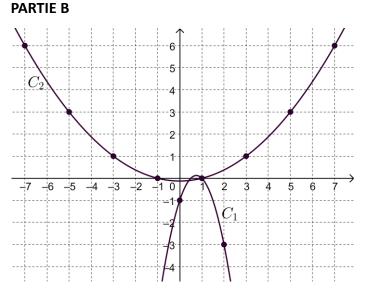


On a tracé ci-contre les paraboles C_1 et \mathcal{C}_2 représentatives des polynômes du

second degré f et g telles que :

$$f(x) = -2x^2 + 3x - 1$$
 et $g(x) = \frac{x^2 - 1}{8}$.

- 1. Donner, sans justifier, la catégorie de la courbe C_1 .
- **2.** On pose x = 2k + 1 avec k entier.
 - **a.** Montrer que $x^2 1$ est multiple de 8.
 - **b.** Déterminer la catégorie de la courbe C_2 .

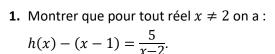


3. Un polynôme du second degré P peut être défini pour tout réel x par : $P(x) = ax^2 + bx + c$ avec a, b et c ses coefficients ($a \neq 0$).

Les affirmations suivantes sont-elles vraies ou fausses? Justifier.

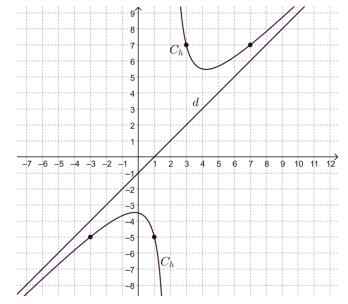
- a. Un polynôme du second degré dont un coefficient est irrationnel a pour représentation graphique une courbe zéro-entière.
- b. Une courbe entière est la courbe représentative d'un polynôme du second degré si et seulement si ses coefficients sont tous entiers.

On a tracé ci-contre l'hyperbole \mathcal{C}_h représentant la fonction h définie par $h(x) = \frac{x^2 - 3x + 7}{x - 2}$ ainsi que la droite dd'équation y = x - 1.



- 2. Donner la liste des diviseurs entiers relatifs du nombre 5.
- **3.** En déduire que la courbe C_h est finieentière et déterminer les points à coordonnées entières de C_h .

PARTIE C

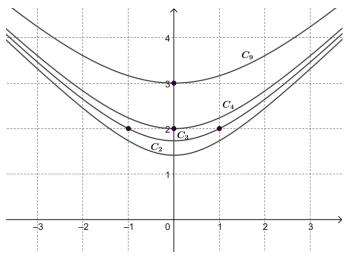


PARTIE D

On s'intéresse aux fonctions f_n définies sur $\mathbb R$ par $f_n(x)=\sqrt{x^2+n}$ avec n entier naturel, de courbe représentative C_n .

On a tracé les courbes C_2 , C_3 , C_4 et C_9 ci-contre.

- **1.** Montrer que, pour tout n entier naturel, la courbe C_n admet un axe de symétrie.
- **2.** Quelle est la catégorie de la courbe C_0 ?
- **3.** Montrer que si n est le carré d'un entier, C_n passe par un point à coordonnées entières, et préciser ses coordonnées en fonction de n.



Pour la suite on pose $y = \sqrt{x^2 + n}$.

- **4. a.** Montrer que trouver les entiers x et y tels que $y = \sqrt{x^2 + n}$ revient à trouver les entiers x et y tels que (y x)(y + x) = n avec $y \ge 0$.
 - **b.** En déduire la catégorie de la courbe C_1 puis la catégorie de la courbe C_2 .
- 5. Dans cette question on considère que n est un nombre premier différent de 2. Il ne peut alors se décomposer qu'ainsi : $n=1\times n=n\times 1$. Justifier que C_n est finie-entière et qu'elle passe seulement par deux points à coordonnées entières dont on déterminera les coordonnées en fonction de n.
- **6.** On considère dans cette question que $n = p \times q$ avec p et q entiers naturels impairs tels que $p \le q$.
 - **a.** Montrer que le couple (p,q) donne deux points à coordonnées entières appartenant à C_n pour $p \neq q$ et un seul point pour p = q.
 - **b.** Déterminer tous les points à coordonnées entières de la courbe \mathcal{C}_{2025} .

Exercice 3 (pour les candidats ne suivant pas l'enseignement de spécialité de la voie générale) : Mes amis les rectangles

INTRODUCTION:

Une unité de longueur a été choisie et une unité d'aire lui est associée mais on ne les mentionnera pas.

On appelle « <u>rectangle entier</u> » tout rectangle dont les dimensions, longueur et largeur sont des entiers naturels non nuls.

Tous les rectangles considérés dans ce problème seront entiers.

Tout rectangle de longueur L et de largeur ℓ pourra être noté par le couple (L, $\ell)$ avec $L \geq \ell > 0$.

- 1. Vérifier que le rectangle (13, 2) a pour périmètre 30 et pour aire 26.
- **2.** Donner l'expression de l'aire et du périmètre en fonction de L et ℓ .

PARTIE 1: Rectangles amis

On considère deux rectangles entiers, l'un de périmètre p_1 et d'aire a_1 et le second de périmètre p_2 et d'aire a_2 . Ces deux rectangles sont dits « <u>amis</u> » lorsque le périmètre de l'un est égal à l'aire de l'autre, autrement dit lorsque $p_1 = a_2$ et $p_2 = a_1$.

- **1.** Les deux rectangles (13, 2) et (10, 3) sont-ils amis ? Justifier.
- **2.** Les deux rectangles (7,6) et (11,10) sont-ils amis ? Justifier.
- **3.** Évariste propose de doubler les dimensions des deux rectangles précédents afin d'avoir deux nouveaux rectangles amis. A-t-il raison ? Expliquer.

PARTIE 2 : Rectangle ami avec lui-même

On dit qu'un rectangle est « ami avec lui-même » lorsque son périmètre est égal à son aire.

- 1. Le rectangle (2, 1) est-il ami avec lui-même? Justifier.
- **2. a.** Le carré (2, 2) est-il ami avec lui-même ? Justifier.
 - **b.** Trouver tous les carrés amis avec eux-mêmes.
- **3.** On suppose qu'il existe au moins un rectangle ami avec lui-même et on le note (L, ℓ) .
 - **a.** Expliquer pourquoi $L \neq 2$.
 - **b.** Montrer que $\ell = \frac{2L}{L-2}$ et en déduire que $\ell = 2 + \frac{4}{L-2}$.
 - **c.** Donner tous les diviseurs positifs de 4. En déduire que L ne peut prendre que trois valeurs : 3, 4 ou 6.
 - **d.** En déduire que le rectangle (6,3) est l'unique rectangle, non carré, ami avec lui-même.
- **4.** Pour trouver tous les rectangles amis avec eux-mêmes, Isaac a commencé à tracer un graphique, qui est donné en annexe.
 - a. À quel type de rectangle correspondent les coordonnées des points sur la droite tracée ?
 - **b.** En vous aidant de la question **3.b.**, sur ce graphique, tracer la courbe qui vous permettrait de retrouver les dimensions des rectangles amis.
 - c. Expliquer comment retrouver sur le graphique les résultats des questions 2.b. et 3.d.

PARTIE 3: Algorithmes

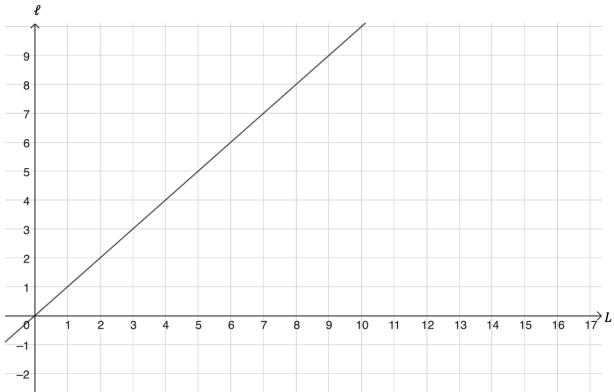
- 1. Ada souhaite programmer sa calculatrice pour trouver tous les rectangles qui sont amis avec (13,2), et ayant une longueur inférieure à 55.
 - Les lignes 2 et 3 du programme Python donné en annexe lui permettent de créer un rectangle (L, l).
 - Compléter sur l'annexe les lignes 4 et 5 pour tester si les rectangles (13, 2) et (L, l) sont amis et donner les paires de rectangles amis ainsi obtenues.
- 2. Ada souhaite maintenant trouver toutes les paires de rectangles amis.
 - Écrire un algorithme en Python qui affiche toutes les paires de rectangles amis dont les dimensions sont inférieures à 55 et donner les paires de rectangles amis ainsi obtenues.

Annexe exercice 3 (pour les non spécialistes) :

À rendre avec la copie

NOMS:				
Prénoms :				
Nom de l'établissement :				
Ville :				
Numéro de groupe :				

PARTIE 2, question 4:



PARTIE 3, question 1: